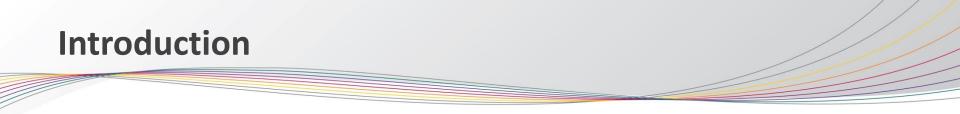
Understanding offline testing and condition monitoring results for bushings

Dr. Tony McGrail Solutions Director: Asset Management & Monitoring Technology Doble Engineering



When bushings go bad

- The aim of this presentation is to review
 - The basics of bushing offline testing
 - Motivations for bushing condition monitoring
 - Examples of bushing saves
 - Some of the features which appear in good monitoring applications.
- We have successful bushing saves from many locations, some of which have been presented at the International Conference of Doble Clients; full papers available on request.

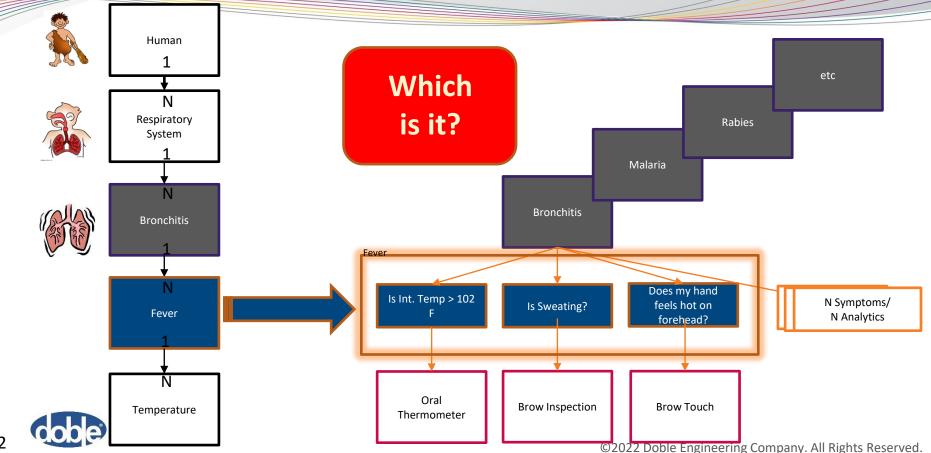
Motivation: Industry Experience

- A technical paper by Sokolov and Vanin at the 1997 International Conference of Doble Clients¹ noted results of a survey:
 - ...irrespective of their geographical location or differences in design, high-voltage bushings remain one of the weakest components and may have been the cause of up to 30% of all of the large transformer failures. Because of preventive maintenance, the number of defective bushings removed from service annually is ten times the number of failed bushings.
- CIGRE Working Group A2.43:
 - A failure of any of the bushings results in a transformer failure as well. According to various researches, **bushings cause 5 to 50 % of the total number of transformer** *failures*, often followed by transformer damages, fires, huge collateral damage and ecological incidents².

"Evaluation and Identification of Typical Defects and Failure Modes in 110-750 Kv Bushings", V. Sokolov & V. Vanin, 64th International Conference of Doble Clients, Boston, USA, 1997
 CIGRE Technical Brochure 755 "Transformer Bushing Reliability" 2019

Motivations: safety, financial, reliability, management

- All assets will fail it's a matter of 'when' not 'if':
 - We can prevent failures if we have adequate warning of deterioration
 - Regular offline testing *could* give such warning
 - But if you only test every 6 or 10 or 12 years, you may miss a few failures
- Bushing failure *usually* leads to transformer failure^{1,2}:
 - The results may be catastrophic safety impacts severe
 - Business interruption costs and environmental clean-up costs may greatly exceed asset replacement costs
- Appropriate monitoring may prevent failures:
 - Detect and diagnose failure modes and have a planned response!
- ISO 55001 (2014): Asset Management
 - Section 9: Performance Evaluation
 - Monitoring, measurement, analysis, audit, review, improve


1: "Evaluation and Identification of Typical Defects and Failure Modes in 110-750 Kv Bushings", V. Sokolov & V. Vanin, 64th International Conference of Doble Clients, Boston, USA, 1997 2: CIGRE Technical Brochure 755 "Transformer Bushing Reliability" 2019

Motivation: some failure modes

- As the insulation deteriorates, the bushing will eventually fail
 - Electrical stress will accelerate 'natural' deterioration
- What can cause deterioration? Some modes include:
 - Moisture/contamination ingress through seals, filler caps or flanges
 - Damaged outer covers (porcelain or other material) allowing ingress of moisture/contamination
 - Damage during storage, from animals, vandalism etc
 - Manufacturing defects which provide uneven electrical stress
 - Overheating, leading to?
- Symptoms?
 - What can we measure and what do the measurements mean?

Symptoms? Symptoms of what, exactly?

12

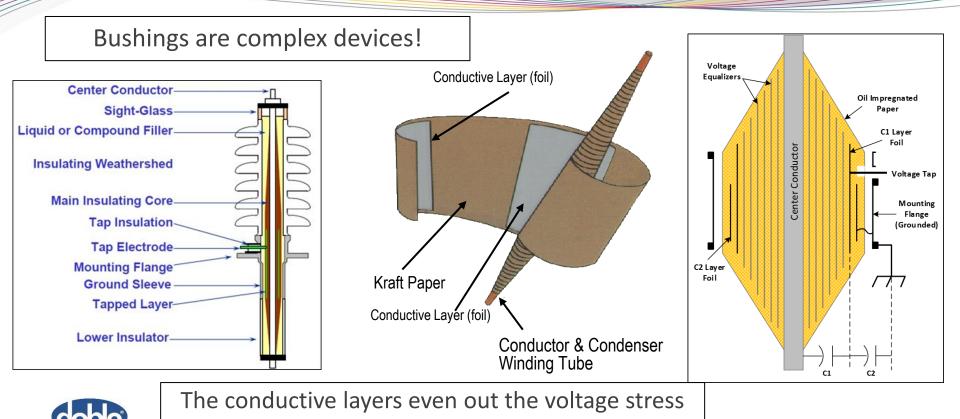
Motivation: Bushings and Timescales to Failure

- Bushings generally have two distinct failure mode *timescales*:
 - 'Graceful': exemplified by GE Type U bushings where deterioration may take place over several weeks to months¹
 - 'Rapid Onset': found in Trench COT(A) bushings where deterioration may become evident over a few hours²

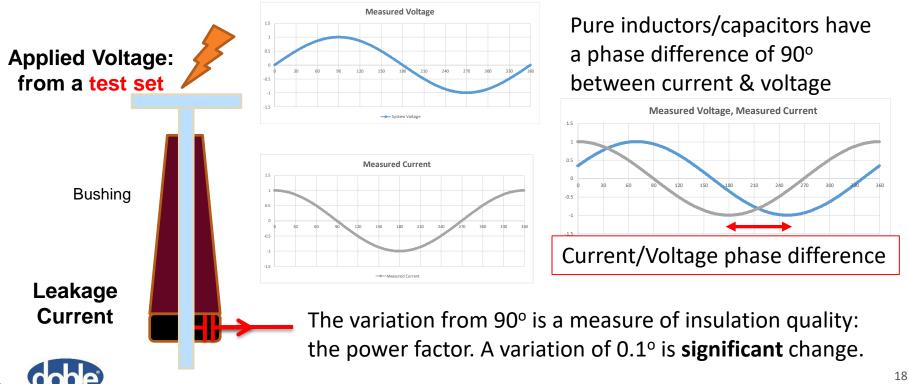
1: "Chronicling the Degradation of a 345kV GE Type U Bushing", R. Wancour *et al*, 76th International Conference of Doble Clients, Boston, USA, 2009 2: "Condition Monitoring in the Real World", K. Wyper *et al*, 80th International Conference of Doble Clients, Boston, USA, 2013

Motivation: Identify Failure Modes to Prevent Failure

- A bushing allows a current to pass through a barrier
 - Usually, a conductor at elevated voltages and a grounded barrier
- If the insulation deteriorates, the bushing may be compromised and then fail
 - And transformers, breakers etc may fail as a consequence¹
- Check 2019 Doble Client Conference paper:
 - * "Bushing Monitoring What We Can Measure And Implications For Deterioration Detection"
 - Paper discusses thermography/IR, PD, current/phase, power factor and capacitance etc
- Measuring parameters which relate to the deterioration <u>makes sense</u>
- As we're interested in the deterioration of insulation,.
 - We can measure currents/voltages and then derive other parameters


1: CIGRE Technical Brochure 755 "Transformer Bushing Reliability" 2019

- IEEE Std C57.19.00[™] IEEE Standard General Requirements and Test Procedure for Power Apparatus Bushings
- IEEE Std C57.19.01[™] IEEE Standard Performance Characteristics and Dimensions for Outdoor Apparatus Bushings.
- IEEE Guide C57.19.100[™] IEEE Guide for Application of Power Apparatus Bushings.
- IEEE Std 4[™] IEEE Standard Techniques for High Voltage Testing.
- IEEE C57.143[™] IEEE Guide for Application for Monitoring Equipment to Liquid-Immersed Transformers and Components



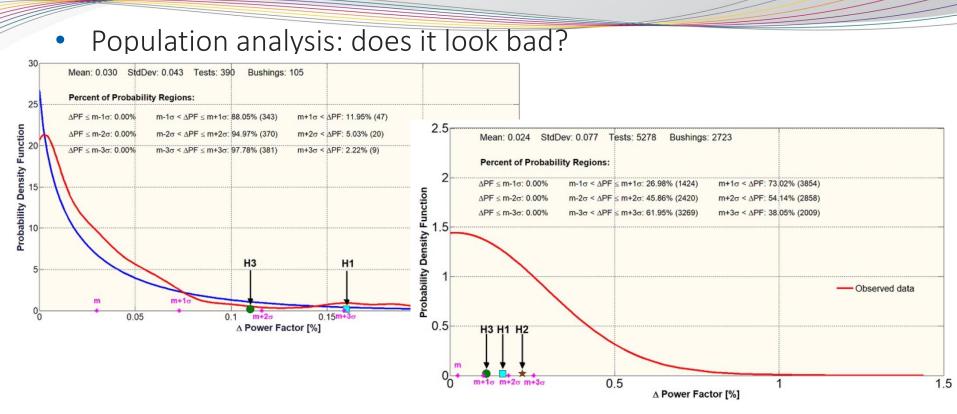
Inside a bushing... much can go wrong

Power Factor: Offline applied voltage & measured current

We measure applied voltage and leakage currents very accurately: magnitude & phase.

Leakage Current

- Bushing insulation is not perfect:
 - There is a capacitive/resistive leakage which flows to ground
 - Each bushing will have its own leakage current depending on:
 - System voltage driving the current
 - Bushing characteristics
- Variation in the leakage current may thus indicate:
 - Variation in applied voltage
 - Variation in bushing characteristics
- We need to identify the root cause of variation!
 - Which we can do and thus save bushings from failure


Interpreting offline bushing test results

Measurement data and derived data

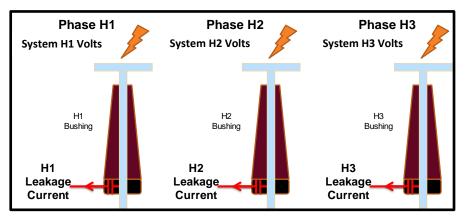
ng to All Bus mp Corr. Tab			ction Facto	C1 Correc		shing C1 Tests	nsformer • E	Tra						
	ECT	DIR	POWER FACTOR %			Capacitance	TEST	Test	Bushing Nameplate			Bust		Test
IR	Watts	mΑ	Corr Factor	@ 20°C	Measured	C (pF)	kV	Mode	Cap (pF)	PF	CAT. #	SERIAL #	Dsg.	No
G/	0.0450	1.5710	1.000	0.29	0.29	416.76	10.01	UST-R	426.00	0.26		K728058	H1	11
G	0.0440	1.5690	1.000	0.28	0.28	416.24	10.00	UST-R	425.30	0.25		K7282187	H2	12
17	0.3810	1.5840	1.000	2.41	2.41	420.10	10.01	UST-R	402.80	0.30		K7296687	H3	13
G	0.0750	2.3530	1.010	0.32	0.32	624.24	10.00	UST-R	621,70	0.29		41445787	XD	14
G /	0.0800	2.3400	1.010	0.34	0.34	620 66	10.01	UST-R	618.60	0.30	Mar and	41446287	X1	15
G/	0.0800	2.3520	1.010	0.34	0.34	623.86	10.01	UST-R	613.30	0.30		41445387	X2	16
G/	0.0780	2.3280	1.010	0.34	0.34	617.60	10.01	UST-R	615.80	0 30		41444287	X3	17
	1				1			UST-R						18
				A				UST-R						19

Interpreting offline bushing test results

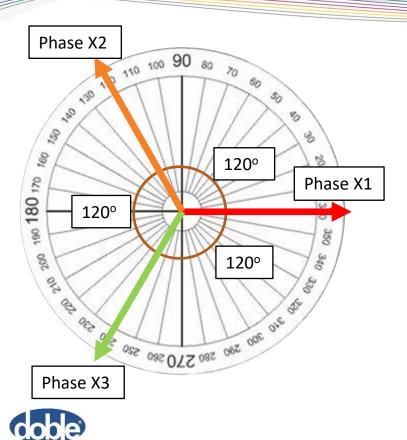
https://www.transformer-technology.com/community-hub/technical-articles/1541-managing-bushings-from-statistics-to-singularities-where-to-focus-tony-mcgrail-byline-transformer-technology.html

Offline v. Online

IEEE C57.143: "IEEE Guide for Application for Monitoring Equipment to Liquid-Immersed Transformers and Components"

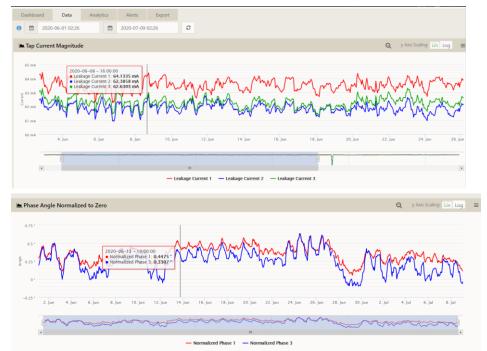

Abstract: Identification of the key parameters that can be monitored for obtaining an indication of the condition of liquid-immersed transformers is covered by this guide. It also covers risk/benefit analysis, sensor application, and monitoring systems application. *This guide does not cover interpretation of monitoring results*

Keywords: IEEE C57.143, liquid-immersed transformers, transformer monitoring


Monitoring: Parameters

- There are several parameters which may be monitored to indicate deterioration:
 - Leakage current: which allows *derivation* of power factor, capacitance and harmonic content
 - Temperature but at which point(s) on the bushing?
 - EMI/RFI: allows detection and diagnostics of partial discharge (PD): this may be a complex analysis as PD signals propagate extensively

Ideal 3 phase system – balanced voltages, currents etc

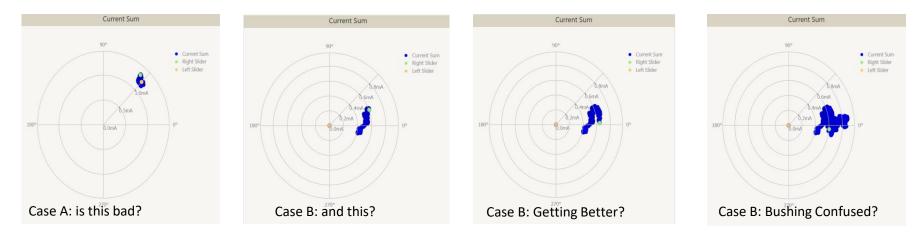

- Relative phase angles all equal
 - X1->X2 = 120°
 - X2->X3 = 120°
 - X3->X1 = 120°
 - Magnitudes all equal
 |X1| = |X2| = |X3|
 - Applies to system voltages, currents including leakage currents
- Sum of currents/voltages is, in theory, zero

In a perfect world: leakage currents are identical

The world is not perfect... system voltage magnitude and phase variations are usually present.

This chart shows leakage current magnitude for each of three bushings in a set: the magnitudes vary over time, and also vary relative to each other

This chart shows relative phase of currents for two of three bushings in a set: each should be 120°. We have normalized to 0° so we can easily measure variation from 'ideal'.

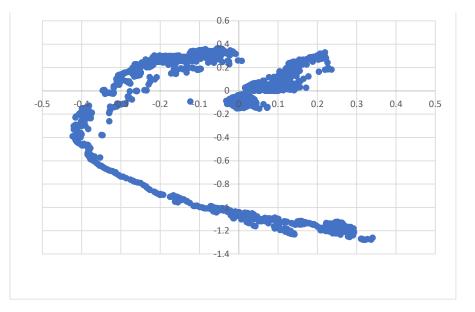

The three relative phase angles sum to zero – all information is available in

any 2 values. A chart with three angles is also to be made available.

In a perfect world – 3 balanced Phases Sum to Zero

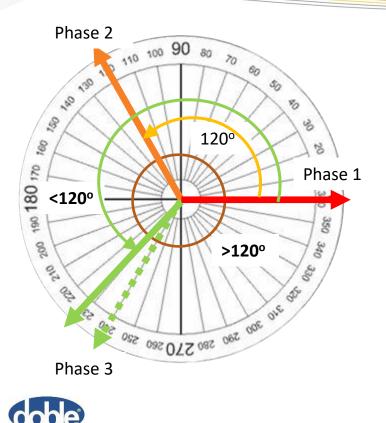
- Sum Current can be a detector, but system variations mean too many false positives
- Doble moved on from this ~20 years ago: look at individual currents

The sum current chart is available in Doble PRIME for 'old time sake'...



The sum should be zero: the cases here are false positives!

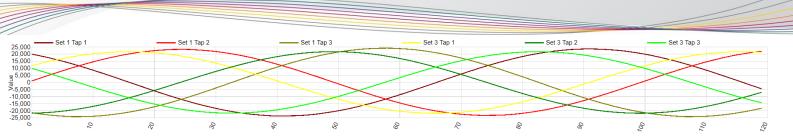
In a perfect world – 3 balanced Phases Sum to Zero


The sum current chart is available in Doble PRIME for 'old time sake'...

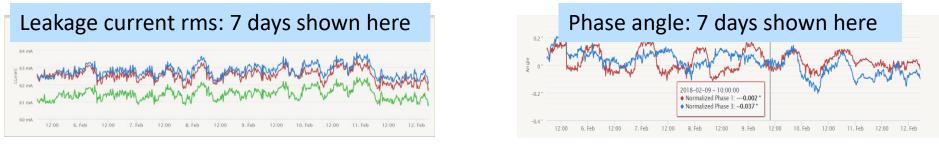
What does this mean?

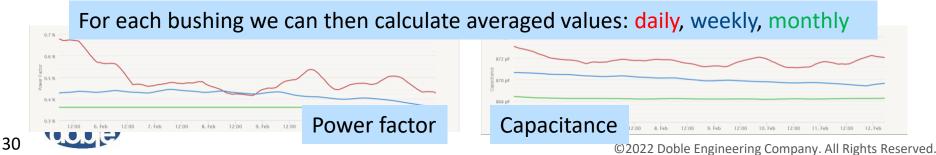
How much phase change would a 'bad bushing' give?

- Relative phase angles **NOT** all equal
 - X1->X2 = 120°
 - X2->X3 = <120°
 - X3->X1 = >120°
- A variation of 0.2° or less would indicate a bad power factor


How do we find this against the 'noisy' system voltage variation? A simple way is to use averaging.

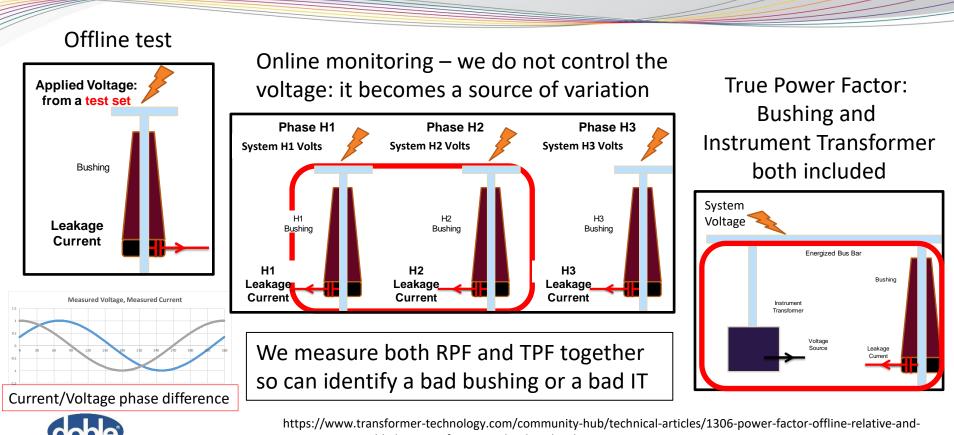
Power Factor: Offline, Online Relative and Online True


- Three measurements why are they not all the same?
 - In offline tests we supply the voltage and can control it very precisely
 - In online measurements we have to find a way to find the voltage
 - The instrument transformer (voltage transformer) is ALSO in the measurement
- We measure both relative power factor (RPF) and true power factor (TPF) simultaneously
- We can identify either bad bushings or bad IT/VTs



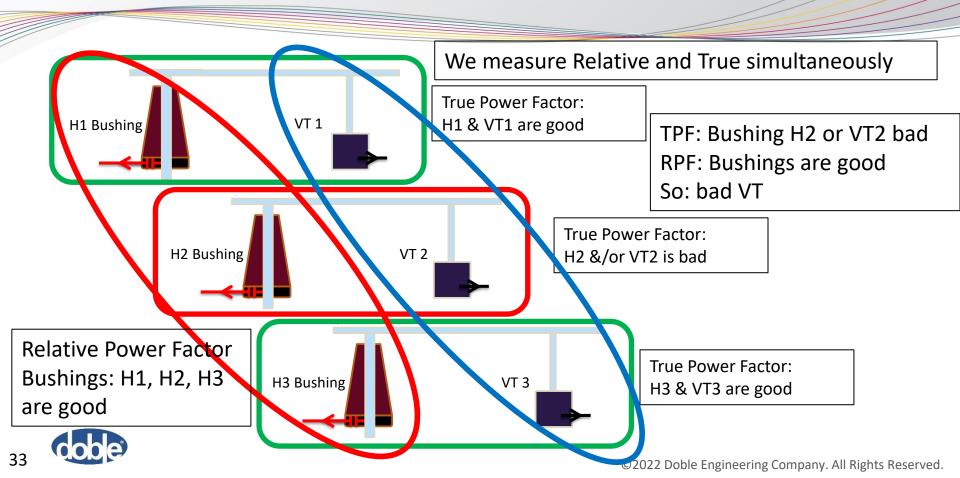
What to measure?

Capture raw sine-waves for every current/voltage reading - these are then used to calculate:



What alerts do we need?

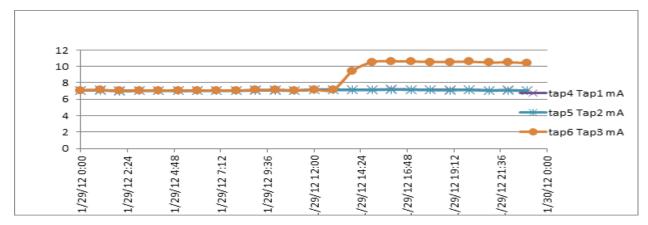
- For each parameter we expect 3 levels of alert:
 - INFO, WARNING, ACTION
- That means 3 alerts for each parameter:
 - RMS current
 - Phase angle
 - Daily, weekly, monthly Capacitance
 - Daily, weekly, monthly Power factor
 - Total Harmonic Distortion (calculated with current RMS and Phase)
- Plus an 'instant' alert on any parameter should it exceed a specified value – removes any averaging effects which could delay an alert



Power Factors: Offline v. Online Relative (RPF) v. Online True (TPF)

true-tony-mcgrail-byline-transformer-technology.html

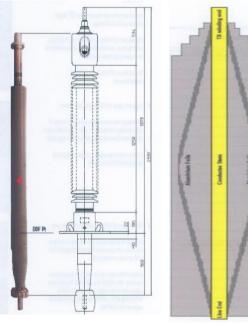
True Power Factor: is it a bad bushing or bad VT?



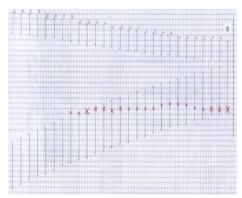
- We have had many cases over the years, several of which have been shared at the Doble Client Conference and elsewhere.
- The cases presented here are examples of different bushing designs and failure modes
- They follow the three C's of condition monitoring:
 - **Control** the measurement
 - Understand the **context**
 - Draw appropriate **conclusions**

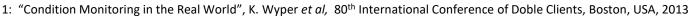
Trench Bushing: learning from the past

Monitoring Trench COT bushings, known to have a catastrophic failure mode, on >65 transmission transformers at up to 345kV¹. Current rose rapidly for one bushing, generating a top level ACTION alert. **The operators had a written and agreed policy requiring switching out and offline testing after an ACTION alert.**


As a result of applying the policy a likely catastrophic failure was avoided. (Detailed analyses on next slide.)

1: "Condition Monitoring in the Real World", K. Wyper et al, 80th International Conference of Doble Clients, Boston, USA, 2013


Trench Bushing: close the feedback loop - forensics


Bushing construction and foil layout.

Burning at a foil edge at a point corresponding to the red x in the construction. A map of how far through the foils the deterioration had progressed. Offline tests confirmed the incipient failure.

GE Type U Bushing: Graceful failure

Bushing monitoring was used to identify a deteriorating bushing.

Alert limits and response plans were put in place before the bushings were returned to service after a maintenance outage.

The rise in power factor was detected and failure averted. Forensic details in the paper¹.

H1 1796658 .26 401 10.007 1.488 0.0410 0.28 394.74 H2 05-105312 .27 492 10.007 1.869 0.0500 0.27 495.89 H3 1797916 .26 406 10.007 1.502 0.0430 0.29 398.36 X1 96-71129 .26 377 10.011 1.421 0.0380 0.27 377.03 X2 3030410394 .24 385 10.007 1.431 0.0390 0.26 376.74										
H1 1796658 .26 401 10.007 1.488 0.0410 0.28 394.74 H2 05-105312 .27 492 10.007 1.869 0.0500 0.27 495.89 H3 1797916 .26 406 10.007 1.502 0.0430 0.29 398.36 X1 96-71129 .26 377 10.011 1.421 0.0380 0.27 377.03 X2 3030410394 .24 385 10.008 1.420 0.0390 0.26 376.74 X3 96-71113 .26 381 10.007 1.431 0.0390 0.27 379.57	ID	Serial	NP %PF	NP Cap	Test kV	mA	Watts	%PF corr	Cap(pF)	1.8
H3 1797916 .26 406 10.007 1.502 0.0430 0.29 398.36 50 X1 96-71129 .26 377 10.011 1.421 0.0380 0.27 377.03 0.0 X2 3030410394 .24 385 10.008 1.420 0.0390 0.26 376.74 X3 96-71113 .26 381 10.007 1.431 0.0390 0.27 379.57	H1	1796658	.26	401	10.007	1.488	0.0410	0.28	394.74	1.6 1.4
X1 96-71129 .26 377 10.011 1.421 0.0380 0.27 377.03 X2 3030410394 .24 385 10.008 1.420 0.0390 0.26 376.74 X3 96-71113 .26 381 10.007 1.431 0.0390 0.27 379.57	H2	05-105312	.27	492	10.007	1.869	0.0500	0.27	495.89	1.2
X1 96-71129 .26 377 10.011 1.421 0.0380 0.27 377.03 X2 3030410394 .24 385 10.008 1.420 0.0390 0.26 376.74 X3 96-71113 .26 381 10.007 1.431 0.0390 0.27 379.57	H3	1797916	.26	406	10.007	1.502	0.0430	0.29	398.36	⊔ 40% 0.8
X2 3030410394 .24 385 10.008 1.420 0.0390 0.26 376.74 X3 96-71113 .26 381 10.007 1.431 0.0390 0.27 379.57	X1	96-71129	.26	377	10.011	1.421	0.0380	0.27	377.03	0.6
	X2	3030410394	.24	385	10.008	1.420	0.0390	0.26	376.74	0.2
N 04-218906 .68 464 10.008 1.739 0.1090 0.60 461.26	X3	96-71113	.26	381	10.007	1.431	0.0390	0.27	379.57	0 \$2
	N	04-218906	.68	464	10.008	1.739	0.1090	0.60	461.26	2

March 2008 Off-Line C1 Test Results

: "Chronicling the Degradation of a 345kV GE Type U Bushing", R. Wancour *et al*, 76th International Conference of Doble Clients, Boston, USA, 2009

©2022 Doble Engineering Company. All Rights Reserved.

Monthly %PF Trend H1 and H3

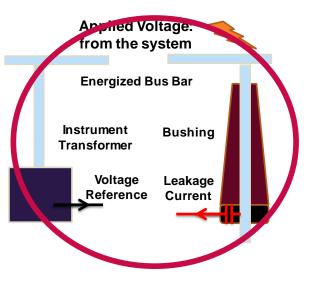
H3 %PF

Westinghouse O+ Bushing

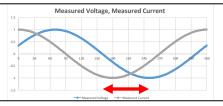
A Westinghouse O+ Bushing generated alerts showing rapid deterioration. The ACTION alert followed ~13 hours after the INFO alert.

/oltage Below Limit	Thu 2018-02-22 11:24 AM					
2967 OPEN	Thu 2018-02-22 11:24 AM					
-3 CLOSED	Thu 2018-02-22 11:18 AM					
IDD306 ALERT Alert	Wed 2018-02-21 9:18 PM					
IDD303 ALERT Warning	Wed 2018-02-21 2:22 PM					
IDD300 ALERT Investigate	Wed 2018-02-21 8:21 AM					
C Battery back to normal	Wed 2017-12-13 10:57 AM					
L - DCBattery Above Limit Limits Exceeded	Wed 2017-12-13 4:20 AM					

Power factor for one bushing rose sharply, and its leakage current rose by ~0.6mA, or about 5%. Offline tests were performed confirming the deterioration: a 9x rise in power factor.


Test No		Bus	hing Nameplati	2	(- S	Test Mode	TEST kV	6	Capacitance C (pF)	POWER FACTOR %		
	Dsg.	SERIAL #	CAT. #	PF	ap. (pF)					Measured	@ 20°C	Corr Facto
11	HI	K728058		0.26	426.00	UST-R	10 01		416.76	0.29	0.29	1.000
12	HZ	K7282187		0.25	425.30	UST-R	10.00		416.24	0.28	0.28	1.000
13	H3	K7296687		0.30	402.80	UST-R	10.01		420.10	2.41	2.41	1.000

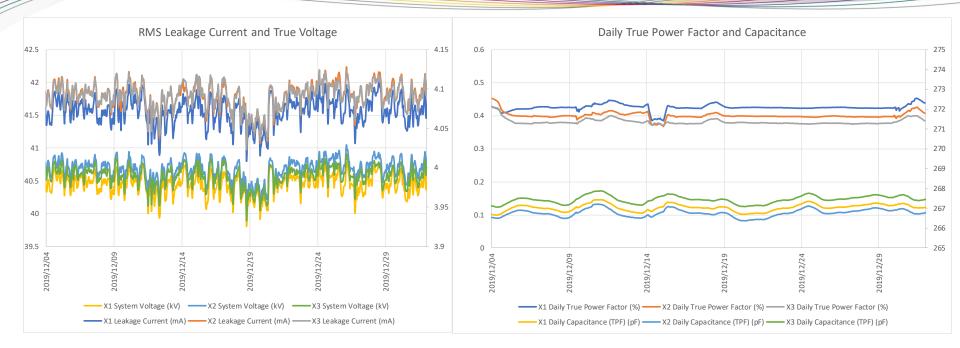
An incipient failure was thus avoided.



True Power factor: Phase by phase

The Instrument Transformer is part of the measurement

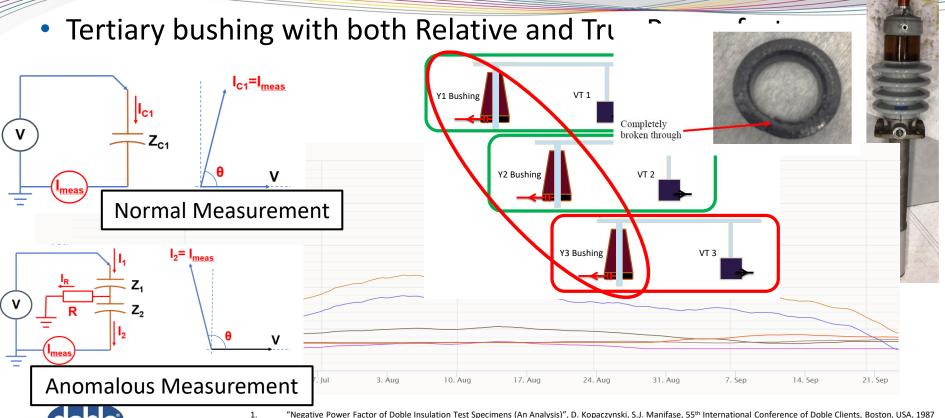
Actual Reference Voltages and Measured Current



We measure the overall PHASE SHIFT

The resulting phase shift *we measure* is a combination of the phase shift of everything between the voltage test point and the bushing test tap.

The power factor is a **true representation** of everything between the measurement points


Using a voltage reference helps remove doubt

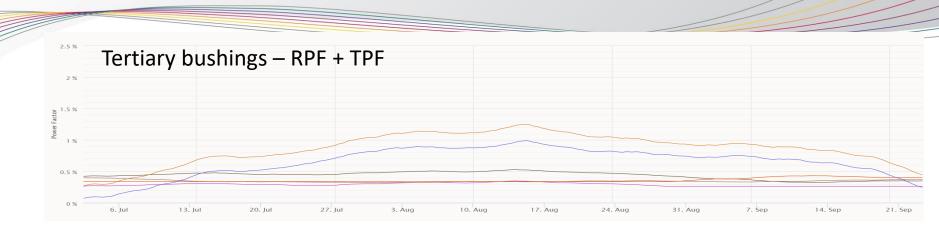
True Power Factor is calculated for the bushing/IT combination on individual phases

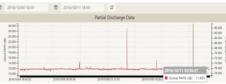
Anomaly? 13kV Tertiary Bushing: gets better?

"Review of Negative Power Factor Test Results And Case Study Analysis", L. Pong, 70th International Conference of Doble Clients, Boston, USA, 2002

2.

RPF and TPF (Relative and True Power Factors)

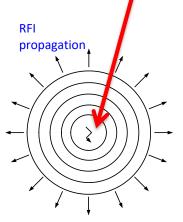



Chart has 6 traces: RPF and TPF for each tertiary bushing

- The two which rise then fall are for the same single bushing
- The offset between the RPF and TPF traces is due to the original TPF set up
- Both RPF and TPF showing a rise and fall means that the bushing is the source of variation
- Scenarios for possible bushing deterioration were identified moisture ingress being most likely
- Forensic analysis of the bushing confirmed moisture ingress through a cracked oil fill-plug gasket
- All three bushings were replaced as a set

PD: Partial Discharge - basics

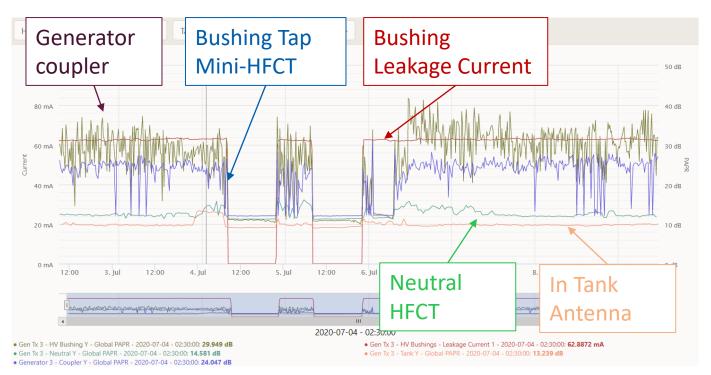
- Partial Discharge is a consequence of insulation deterioration
- Early **detection** and trending allows for appropriate intervention in transformers, rotating machines and other assets
- Detection and trend over time statistics of PD severity
- Use advanced **diagnostic** tools to support decisions



'Detailed diagnostics may require context for analysis and expert support' CIGRE TB 660

"There is desire to use PD... but also fear." Utility Engineer

discharge source



Bushing PD

- Measuring PD via the bushing test tap is useful if you can make sense of the data:
 - Statistical analysis to indicate severity of PD and support trending
 - Time resolved and Phase resolved patterns to support diagnosis
 - Detailed PD analysis can get expensive for multichannel synchronous
- PD signals propagate easily and can be detected far away from the source
- Who will be looking at the data? Check to avoid false positives?
- Who will set alert levels? Who will respond? Who will verify veracity?
- Example at a generator/GSU set with multiple sensors... PD is on the isophase bus, nothing to do with the bushings

Bushing PD

Monitoring Successes: Common Theme

- What we see in successful condition monitoring cases includes:
 - **Setting expectations**: for the monitor, the measurement to be made and the organization
 - Understand: Control, Context, Conclusion
 - For each bushing in each individual application, identify what to expect for leakage current magnitude, for power factor and for capacitance
 - Identify/set limits for each level of alert
 - Have a **planned response** for each alert on each bushing
 - Ensure **the plan is agreed** and 'written up' names, timescales, actions
 - When an alert comes in: FOLLOW THE PLAN!

In Conclusion

Bushing Testing is useful – but highly intermittent!

• Standards exist for analysis of data

Bushing Monitoring provides benefits:

- Bushing 'saves'
- Transformer 'saves'

Needs some understanding of what the numbers mean:

- Failure modes likely to be found in a bushing
- Symptoms of failure modes
- Data for detection of anomaly (not all anomalies are bad)
- Analyses to alert: who, why, what to do, by when

Need the organization to embed monitoring in daily activities

What is common in successful cases is an agreed response plan and decisive action!

THANK YOU!

Questions? Comments? Feedback?

Tony McGrail tmcgrail@doble.com

"Always appreciate the opportunity to learn new things."

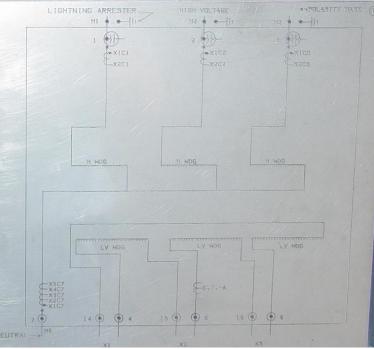
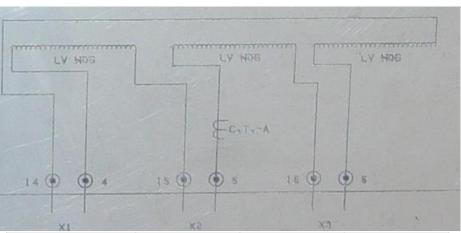
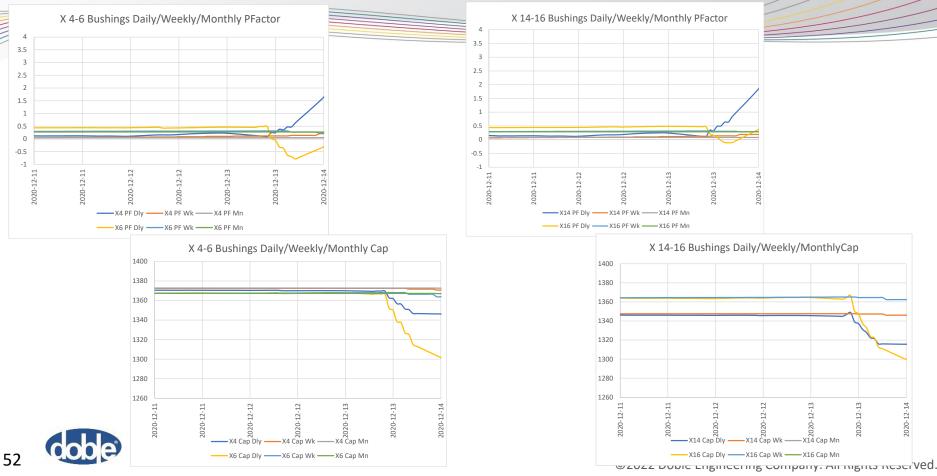

Bonus case... Incoming alerts

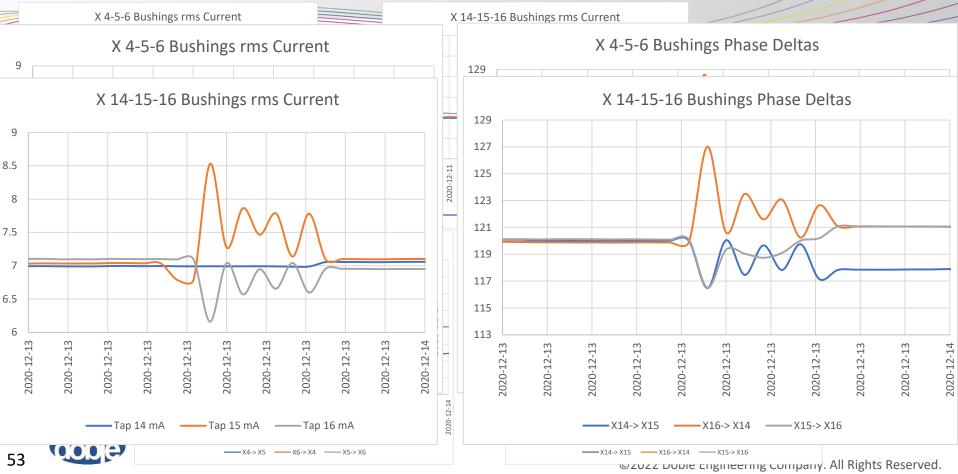
				Table 7-1	IDD Expert System States			
				State	Description			
• 6	egacy	11))) ins	stalled ~2008; c	2998 2999	First recording after learning has been initiated when the apparatus is de-energized			
					First recording after learning has been initiated when the apparatus is energized.			
-	_			3000	Normal completion of the recording with no learning milestones.			
• 50	ome D		3TA issues addr	3001	Normal completion of the recording with daily learning baseline.			
5				0000	Normal completion of the recording with weekly learning baseline.			
				3003	Normal completion of the recording with monthly learning baseline.			
• 2		of occ	calating Alert:	3409	The bushing set is de-energized.			
5	LEVEIS	01 630	alating Alert.	4000	Abnormal recording NO RESULTS.			
				4001	INFO Abnormal Recording NO RESULTS after 5 attempts.			
•	Info '	Marning	g & Action	5010	Exceeded daily Power Factor INFO limit			
	mno,	vvarining	S & ACTON	5011 5070	Exceeded daily Capacitance INFO limit			
					Exceeded weekly Power Factor INFO limit			
			5071	Exceeded weekly Capacitance INFO limit				
	BUSHING ID OR SET NAME	ALERT! LEVEL		5280	Exceeded monthly Power Factor INFO limit			
				5281	Exceeded monthly Capacitance INFO limit •			
ALERT!				6010	Exceeded daily Power Factor WARNING limit			
				6011	Exceeded daily Capacitance WARNING limit			
CODE			RECEIVED DATE/TIME	6070	Exceeded weekly Power Factor WARNING limit			
				6071	Exceeded weekly Capacitance WARNING limit			
			6280	Exceeded monthly Dower Factor WARNING limit				
24-6010	4	WARNING	12/14/2020 12:00	010	Exceeded daily Power Factor WARNING limit			
4.4.604.0				7010	Exceeded daily Power Factor ACTION limit			
14-6010	14	WARNING	12/14/2020 10:00	7011	Exceeded daily Capacitance ACTION limit			
22-5010	4	INFO	12/14/2020 5:00	5010	Exceeded daily Power Factor INFO limit			
				7280	Exceeded monthly Power Factor ACTION limit			
				7281	Exceeded monthly Capacitance ACTION limit			



Transformer Nameplate & History

• 1972, GE Pittsfield, 980 MVA, 345-23.75kV, 3phase, Y-delta




АВВ Туре Т	Bush	Bushing 4		ing 5	Bushing 6		
	Сар	%PF	Сар	%PF	Сар	%PF	
Nameplate	1381	0.32	1351	0.31	1379	0.31	
Measured	1374.9	0.3	1336.1	0.31	1371.5	0.3	
АВВ Туре Т	Bushi	Bushing 14		ng 15	Bushing 16		
	Сар	%PF	Сар	%PF	Сар	%PF	
Nameplate	1355	0.33	1361	0.33	1375	0.32	
Measured	1349	0.32	1353.8	0.31	1368.5	0.3	

ved.

Data: Power Factor and Capacitance

Data: Leakage Currents and Relative Phase

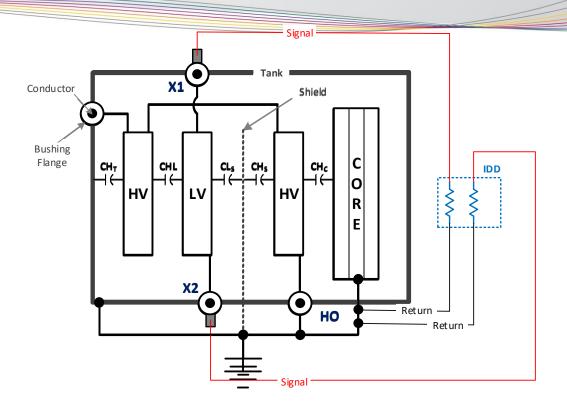
Discussion

- What questions to ask?
 - Is it the bushings?

- Any other relevant data?
 - Temperature, load, protection operation, weather, other...
 - Any maintenance data or family history?
- What's the action???

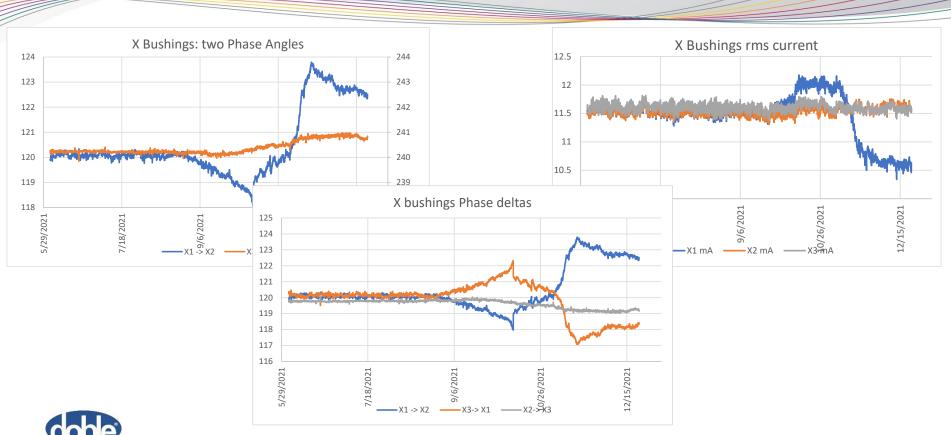
DGA Data

GAS-IN-OIL ANALYSIS GAS CHROMATOGRAPHY EXPRESSED IN PPM


DATE	HYDROGEN	OXYGEN	NITROGEN	METHANE	CARBON MONOXIDE	CARBON DIOXIDE	ETHANE E		CETYLENE	TOTAL COMBUST.	TOTAL GAS
07/30/18	10	6,713	19,862	26	88	1,412	15	2	ND	141	28,128 *
01/15/19	24	7,695	23,719	48	127	1,270	28	3	ND	230	32,914 *
07/01/19	15	1,909	18,730	67	163	3,052	43	4	ND	292	23,983
07/24/19	9	847	11,798	44	96	2,019	27	3	ND	179	14,843
12/18/19	ND	608	15,678	80	172	3,770	43	5	ND	300	20,356
06/01/20	ND	4,191	22,964	26	72	1,540	18	2	ND	118	28,813
11/16/20	2	415	11,778	56	135	2,754	36	3	ND	232	15,179
12/14/20	31	648	12,104	65	145	2,736	35	7	12	295	15,783

RECOMMENDATION INVESTIGATE

E-THE LEVEL OF ACETYLENE INDICATES AN ARCING/SPARKING CONDITION OR SEVERE HOT SPOT WITH TEMPERATURES MOST LIKELY EXCEEDING 700 DEGREES C. POSSIBLE CAUSES INCLUDE DETERIORATED TAP CHANGER CONTACTS, INTERNAL CONNECTIONS, OR THE CORE ASSEMBLY.



More discussion

Bonus case... What does this mean?

