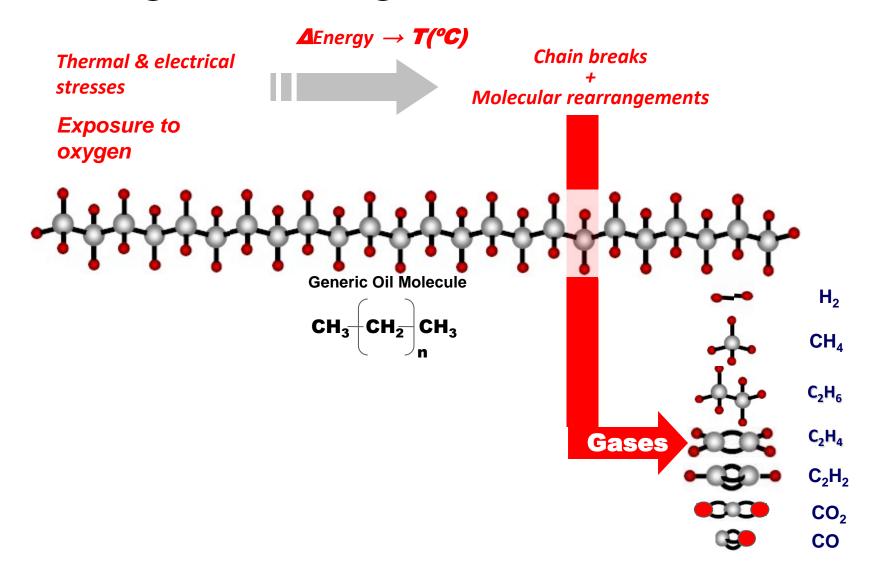


The importance of accuracy in DGA and different diagnostic tools.

Serge Gutieres P.eng.MBA Sr. Business Development Manager OLMS Asia,India,Australia


Mineral oil make up

How fault gases are generated

Dissolved fault gases

7 FAULT GASES

Carbon dioxide (CO₂) Carbon monoxide (CO)

> Indicates a hot spot Burning the insulation paper

Hydrogen (H₂)

Methane (CH₄) 140 C

Ethane (C₂H₆) 250C

Ethylene (C₂H₄) 350C

Acetylene (C₂H₂) 500C+

Indicates developing faults

Gas formation from mineral oil

Temper °(Gases Formed	Symbol	Energy Required kJ/mole
~12	20	Hydrogen	H ₂	338
		Methane	CH_4	338
		Ethane	C ₂ H ₆	607
	Ethylene		C_2H_4	720
>7(00	Acetylene	C_2H_2	960

Combustible Gas Generation vs. MORGAN' SCHAFFER Approximate Oil Decomposition Transforment - Die Inside View Temperature Partial Dispharge (Not Temperature Dependent) Range of Normal Operation (Cil fectorating Temperaturat Hydragua Н, $\mathrm{CH}_{0} \geq \mathrm{H}$ CH. The only 2 gases that are constantly increasing are Ethane Collar, C_2H_6 H2 and C2H2 Ethylene C_2H_4 $C_2H_4 \succ C_2H_4$ Trace Acetylene $C_3H_2 > 10\%$ of C_3H_6 C2H2

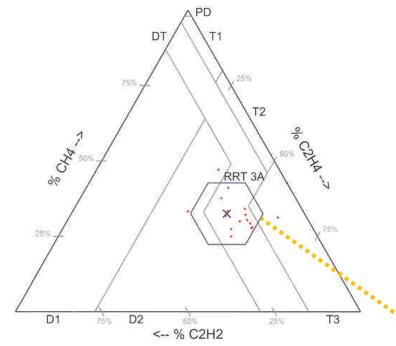
Gas Generation (Not to Scale) Approximate Oil Decomposition Temperature above 150°C

Combustible gas generation rates

Importance of accuracy in DGA

Accuracy requirements for DGA

Accuracy Requirements for DGA


-an accuracy of 15% or better on gas concentrations is needed to obtain reliable DGA diagnosis. This is the accuracy specified by IEC 60567.

-15% of accuracy means that if the value measured by the laboratory is for example100 ppm, the actual value in the transformer may be anywhere between 85 ppm and 115 ppm.

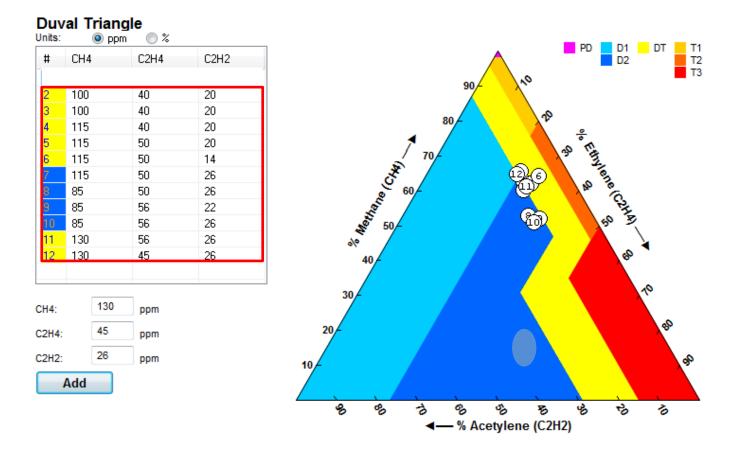
- Accuracy short term and long term of the instrument is critical since all measuring instruments (lab & monitors) will drift with time and lose their accuracy. This is why an automatic calibration system is critical in monitors.

Diagnostic reliability is affected by the accuracy of the DGA measurement results

IEEE August 2005, M. Duval, J. Dukarm, Improving the reliability of transformer in gas-in-oil diagnosis

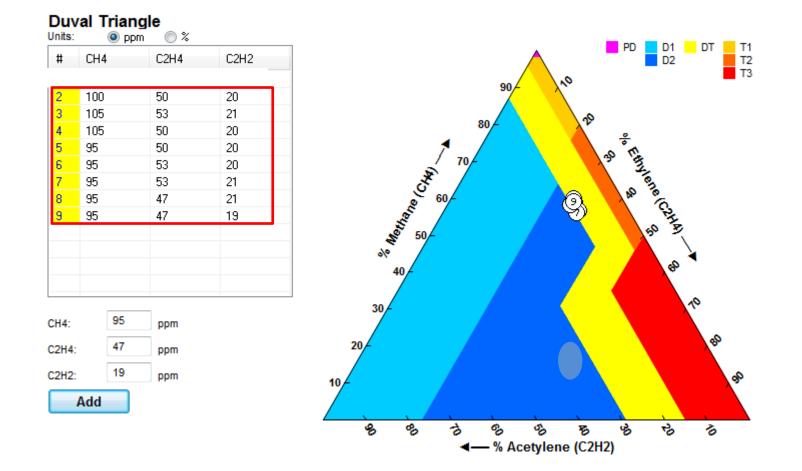
CIGRE result for Round Robin Test (RRT) at low concentration levels.

- Results of individual laboratories
- x prepared DGA standard value ()


When an area of uncertainty crosses several fault zones , reliable diagnostic is not possible.

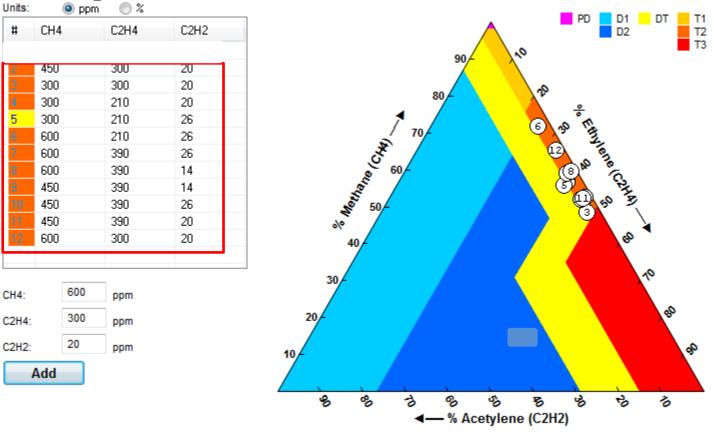
Fault severity is unclear.

+/- 15% variation limit of absolute values


Diagnostic reliability is affected by the accuracy of the DGA measurement results

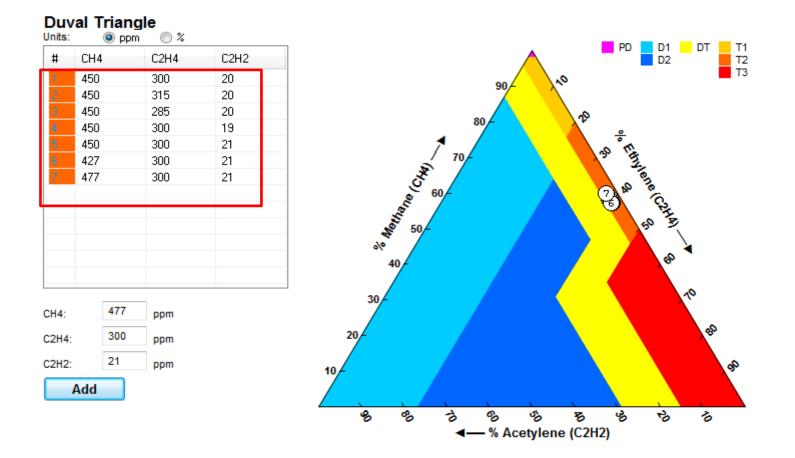
Real gas level CH4 100ppp,C2H4 50 ppm, C2H2 20 ppm with accuracy +/- 30% range

Diagnostic reliability is affected by the accuracy of the DGA measurement results


Real gas level CH4 100ppp,C2H4 50 ppm, C2H2 20 ppm with accuracy +/- 5% range

. I.i.

Diagnostic reliability is affected by the accuracy of the DGA



Real gas level CH4 100ppp,C2H4 50 ppm, C2H2 20 ppm with accuracy +/- 30% range

Diagnostic reliability is affected by the accuracy of the DGA measurement results

Real gas level CH4 100ppp,C2H4 50 ppm, C2H2 20 ppm with accuracy +/- 5% range

DGA LAB - Ideal vs reality

Best case situation	100ppm	96ppm Little	94ppm variations	92ppm / controlle	90ppm dprocess	89ppm	86pm	
Worst case situation	100ppm	90ppm	87ppm	85ppm	82ppm	72ppm	70ppm	
Situation		Process out-of-control / no accuracy Issue with sample preparation / gas extraction / separation / measurement						

Even if a lab is very accurate, it only measures what it receives.

Every Laboratory should be able to demonstrate their precision and accuracy, if this is not possible or by any reason unknown, the below chart is recommended to use as a guide

	Accuracy of IEC/CIGRE laboratories, from round- robin tests using DGA standards.					
	Medium gas concentrations	Low gas concentrations				
Best lab	±3%	±22%				
Average	±15%	±30%				
Worst Lab	±65%	±64%				

IEEE August 2005, M. Duval, J. Dukarm, Improving the reliability of transformer in gas-in-oil diagnosis

Oil standards are the best way to calibrate laboratory test procedures

- Accepted methods for performing Dissolved Gas Analysis (DGA) are outlined in ASTM D3612 and IEC 60567 standards.
- Both methods require proper calibration of laboratory equipment used to perform DGA prior to analyzing oil samples from the field.

True North Gas-in-Oil Standard

Ensures proper calibration of gas extraction and chromatography

Credibility

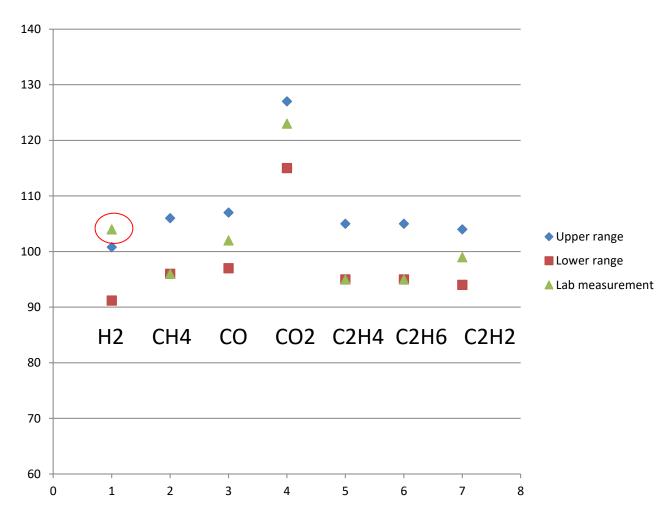
	Certificat	e of Col	ncent	tration		
	NÔR			M		RGAN' HAFFER
DGA O	il Stand	lard	L	300 Saint Patrick, asalle, Quebec, C el: +514.739.1967 Veb: www.morgan	anada, H8N 2H1 Fax: +514.739.	
Syringe S/N:	Lot No.:	Expiry [Date:	Prepar	ed by:	QC Approved:
	RN178	2015-0	2015-09-30 RN			
Component	Concentration*	(ppm)	Com	ponent	Concent	tration* (ppm
H ₂ (Hydrogen)	97 ± 5			arbon Dioxide		± 5%
O ₂ (Oxygen)	16400 ± 5			thylene)	100	
N ₂ (Nitrogen)	59200 ± 5			thane) cetylene)	99 99	$\pm 5\%$ $\pm 5\%$
CH ₄ (Methane)	97 ± 5	%	U2112 (A	cetylerie)	55	± 070

Traceability is key to credibility

.

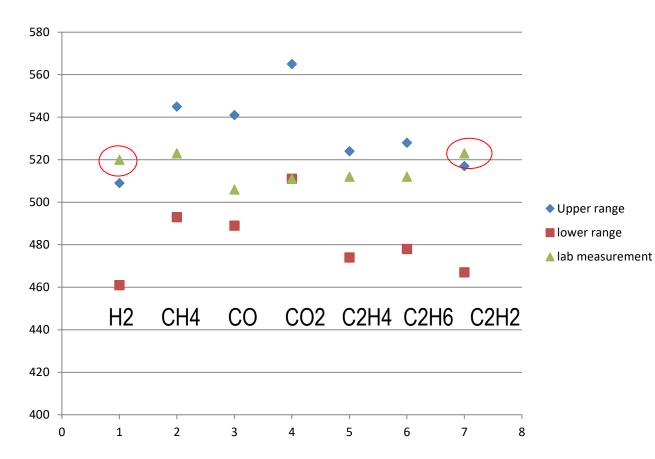
.

- True North oil is produced using NIST traceable gas concentrations and NIST traceable calibrated balances
- Certificate of Concentration
 provided for each sample


Order Information

To order: **sales@morganschaffer.com** or through your local Morgan Schaffer Authorized Representative

	True North	Atlantis
Syringe size	30 or 50 ml	30 or 50 ml
Concentration	10, 100 or 500 ppm	15 or 30 ppm
Guaranteed Shelf Life	True North: 30 days from syringe filling date True North Long Life: 60 days from syringe	30 days from syringe filling date
Warranty	True North: 30-days True North Long Life: 60-days	30 days


Lab testing with gas in oil standard 100 PPM

©2023 Altanova Group. All Rights Reserved

ΛLTΛΝΟV

Lab testing with gas in oil standard 500 PPM

DGA - Portable vs lab

100ppm

Gas extraction

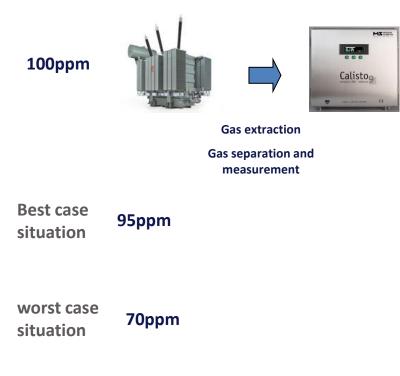
MYRKOS -

Gas separation and measurement

Best case situation

90ppm

worst case situation


70ppm

Portable accuracy depends on:

- Detector accuracy and LDL
- Regular calibration of the unit.
- Extraction and separation efficiency
- Time to analyze sample

DGA – OLM vs lab

OLM accuracy depends on:

- Oil circulation
- Detector accuracy and LDL
- Regular calibration of the system.
- Extraction and separation efficiency

Dissolved gas limits various sources

Criterion	H ₂	СО	Methane	Ethane	Ethylene	Acetylene	CO2	TCG
DOBLE	100	250	100	60	100	5 (1)*	10,000 –core** 20,000-shell**	610
IEEE C57.104 (2008)	100 101-700 701-1800 >1800	350 351-570 571-1,400 >1,400	120 121-400 401-1,000 >1,000	65 66-100 101-150 >150	50 51-100 101-200 >200	1 2-9 10-35 >35	2500 2500-4000 4001-10000 >10,000	720 721-1920 1921-4630 >4630
IEC 60599 (ranges)	50-150	400-600	30-130	20-90	60-280	2-20 (No OLTC) 60-280 (Communicating OLTC)	3800-14,000	

Values based on statistical norms or consensus values

*Would consider 1 ppm or more of acetylene as abnormal for further evaluation

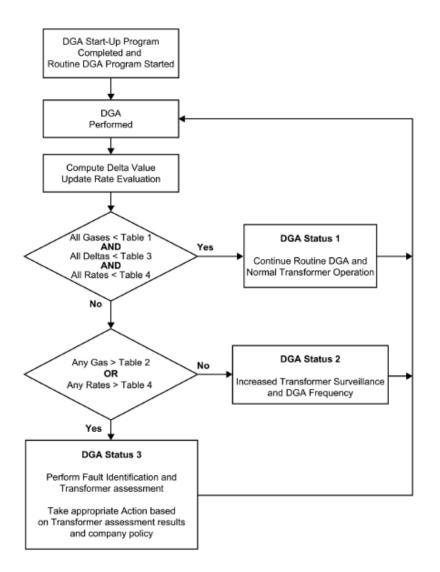
**Empirically based guidelines

Diagnosing transformer condition

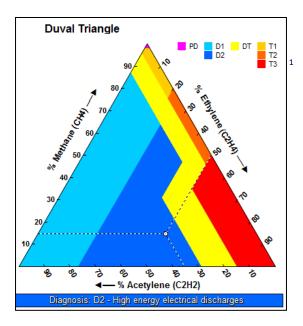
IEEE Guide for Interpretation of Gasses C57.104-2008

1		TROO							
		TDCG							
		Rate							
Condition	TDCG (ppm)	(ppm/day)	Sampling Interval	Operating Procedure					
		>30	daily	Consider removal from service.					
		10 - 30	daily	Advise manufacturer.					
4	>4630	<10	weekly	Exercise extreme caution. Analyze for individual gases. Plan outage. Advise manufacturer.					
		>30	weekly	Eversion extreme equition Applying					
2	3 1921 - 4630	4004 4000	4004 4000	4004 4000	4004 4000	10 - 30	weekly	Exercise extreme caution. Analyze	
3		<10	monthly	for individual gases. Plan outage. Advise manufacturer.					
	721 - 1920	721 - 1920	>30	monthly	Eversion equation Applyto for				
2			721 - 1920	21 - 1920 10 - 30	monthly	Exercise caution. Analyze for individual gases. Determine load dependence.			
		<10	quarterly	dopondonioo.					
1	1 <=720		- 700	>30	monthly	Exercise caution. Analyze for individual gases. Determine load dependence.			
· ·	S=120	10 - 30	quarterly						
		<10	annually	Continue normal operation.					

TDG (Total Dissolved Gases) expressed in % to 1.000.000ppm, i.e. in the picture TRN1 we see 7%, meaning there is a total of 70.000 ppm of gases (all the gases)


TDCG (Total Dissolved Combustible Gases) all the gases except N2, O2 and CO2, also in % to 1.000.000ppm, that's why we see 0% (less than 1ppm, as almost all the gases are N2, O2 and CO2)

THCG (Total Headspace Combustible Gases) are the gases on the headspace at the transformers (especially in sealed transformers with N2 blanket) as the gases dissolved in the oil are in equilibrium with the headspace, we calculate, based on the Ostwald coefficient, each gas at the headspace level.


IEEE flowchart 57-104-2019

Diagnosing transformer condition

The Duval Triangle method, like any other DGA diagnostic method, should be applied only when there is some suspicion of a fault, based on an increase in combustible gas or some other suspicious symptom. The diagnostic method itself is not a means of fault detection.

Because of the relative inaccuracy of gas-in-oil concentration measurements at low concentrations, DGA diagnostic methods, including the Duval Triangle, should not be applied unless the gas concentrations are well above the detection limit.

If reasonably stable concentrations of the gases were present before the onset of the suspected fault, *it is advisable to subtract out the background concentrations,* provided that the differences are large enough for interpretation. The diagnosis should be based on recently-formed gas if possible, and including pre-fault gas in the diagnostic calculations can lead to misleading results².

Symbols	Faults	Examples
PD	Partial discharges	Discharges of the cold plasma (corona) type in gas bubbles or voids, with the possible formation of X-wax in
D1	Discharges of low energy	paper Partial discharges of the sparking type, inducing pinholes, carbonized punctures in paper
		Low energy arcing inducing carbonized perforation or surface tracking of paper or the formation of carbon particles in oil
D2	Discharges of high energy	Discharges in paper or oil, with power follow through, resulting in extensive damage to paper or large formation of carbon particles in oil, metal fusion, tripping of the equipment and gas alarms
DT	Thermal and electrical faults	Mixture of thermal and electrical faults
T1	Thermal fault, T<300°C	Evidenced by paper turning brownish (>200°C) or carbonized (>300°C)
T2	Thermal fault, 300 <t<700°c< td=""><td>Carbonization of paper, formation of carbon particles in oil</td></t<700°c<>	Carbonization of paper, formation of carbon particles in oil
T3	Thermal fault, T>700°C	Extensive formation of carbon particles in oil, metal coloration (800°C) or metal fusion (>1000°C)

 \square

¹ PPMreport, Morgan Schaffer Myrkos's operating system

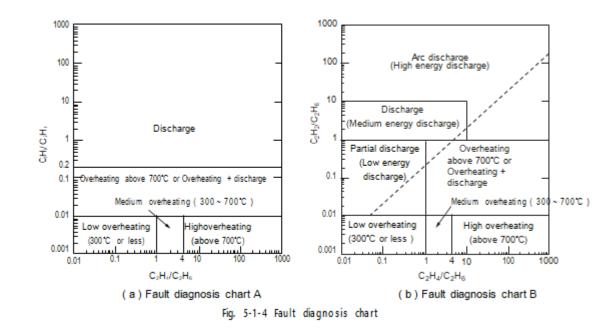
² http://www.deltaxresearch.com/triangle.htm

Diagnosing transformer condition

Rogers Ratios	Acetylene (C ₂ H ₂)	Methane (CH ₄)	Ethylene (C ₂ H ₄)
	Ethylene (C ₂ H ₄)	Hydrogen (H ₂)	Ethane (C_2H_6)
Suggested Fault Diagnosis			
Normal	< 0.1	> 0.1 - < 1.0	< 1.0
Partial Discharge	< 0.1	< 0.1	< 1.0
Arcing	0.1 - 3.0	0.1 - 1.0	> 3.0
Slight Thermal Fault	< 0.1	> 0.1 - < 1.0	1.0 - 3.0
Thermal Fault <700C	< 0.1	> 1.0	1.0 - 3.0
Thermal Fault >700C	< 0.1	> 1.0	> 3.0

Rogers used these relationships and determined that if a certain ratio existed, then a specific temperature had been reached. By comparing a large number of transformers with similar gas ratios and data found when the transformers were examined, Rogers could then say that certain faults were present. Like the Key Gas Analysis above, this method is not a "sure thing" and is only an additional tool to use in analyzing transformer problems.

FIST 03-30, USA Bureau of reclamation


Doernenburg Ratios	Methane (CH ₄)	Acetylene (C ₂ H ₂)	Acetylene (C ₂ H ₂)	Ethane (C ₂ H ₆)
	Hydrogen (H ₂)	Ethylene (C ₂ H ₄)	Methane (CH ₄)	Acetylene (C ₂ H ₂)

Suggested Fault Diagnosis				
Thermal Decomposition	> 1.0	< 0.75	< 0.3	> 0.4
Partial Discharge	< 0.1	Not Significant	< 0.3	> 0.4
Arcing	0.1 - 1.0	> 0.75	> 0.3	< 0.4

ETRA diagnostic



- Tool used in Japan and Taiwan
- Easier to use than a triangle

OLTC DGA diagnostic duval triangle

OLTC DGA diagnostic

	Arcing Type LTC's (Resistive & Reactive)*			
Ethylene	<.5	Norm	al, continue annual sampling	
Acetylene	.5< X<1	Warning, sample more frequently, trend		
	>1	Severe heating / coking probable, inspect,		
			* - Ethylene & Acetylene >50ppm	
			Vacuum Type LTC's	
	< 10 ppm		Normal, continue annual sampling	
Total Combustible Gasses	10< X<25	ppm	Warning, sample more frequently, trend	
	>25 ppm		Heating / coking probable, Inspect	

	C (C (C)	2H4) (C2H6) hane+ Ethylene							
		etylene* 2H2) * Acetylene >500 ppm							
Ratio	Diagnosis	Recommended Sampling Frequency							
<.5	Normal	Sample Annually							
.5 to 1	Possible Heating	Sample every 3-6 months							
1 to 3	Possible Heating	Sample every 1-3 months							
3 to 5	Possible Heating	Sample weekly to monthly							

Accuracy

Stenestam Ratios

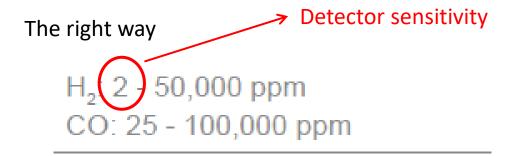
Remove From Service & Inspect

Barrow 188 Perce Testromore

Overheating Probable

>5

New OLTC diagnostic tool


- Use Multigas monitor to generate DGA analysis
- Use OLTC Duval triangles to diagnose potential problems
- Will help go from a time maintenance base to a Condition base maintenancemajor \$\$\$ saving

How to read an OLM spec sheet for LDL and accuracy

How to read accuracy spec sheet

The wrong way

Measuring Quantities Hydrogen H₂: Carbon Monoxide CO: Measuring range 0 ppm ... 2.000 ppm 0 ppm ... 2.000 ppm

H2 25 – 2,000 ppm CO 25 – 2.000 ppm Measuring accuracy H ± 15 % of the measuring value ± 25 ppm ± 20 % of the measuring value ± 25 ppm

ΛLΤΛΝ Monitor accuracy - system vs detector

				Performance					الوالاتياني	بالالاتقا العرز										
					H ₂	co	CH4	C2H2	C ₂ H ₄	C ₂ H ₀	CO2	02	N ₂	H ₂ O						
				Lower detection limit (LDL) (9	ppm 0.5	10	0.2	0.2	0.2	0.2	15	500	2,000	2 ppm, or 2% RS						
				Range	ppm				1	and the second s			- Localdon	Saturation,						
						0 - 30,000	0 - 100,000	0 - 100,000	0 - 200,000	0 - 200,000	0 - 100,000	0 - 100,00	0 0 - 150,000	or 100% RS						
				Accuracy in factory ⁽²⁾	Percent 2%	2%	2%	2%	2%	2%	2%	2%	2%							
				Accuracy in service ⁽³⁾		s X% of readin		Trans	Tarras	1000	Incom		The second	3 ppm, or 3% RS						
System Accuracy				Repeatability	X=5 (LDL plu:	X=5 s Y% of reading	X=5 ng) ppm	X=5	X=5	X=6	X=5	X=15	X=15	2 ppm, or						
					¥=3	Y=3	¥=3	¥=3	¥=3	Y=4	Y=3	Y=10	Y=10	2% RS						
				Resolution at LDL	ppm 0.5	2	0.2	0.2	0.2	0.2	5	100	1,000	1 ppm, or 1% RS						
						figurable: 80,								6 seconds						
	interval Step response	se In 80 minutes: 95% H ₂ ; 90% CO, CH ₄ ; CO ₂ , O ₂ , N ₂ ; 80% C ₂ H ₂ , C ₂ H ₄ , C ₂ H ₆ 9									95% in 20 minutes									
	(typical)	(typical) 20																		
(
extraction separation					detection															
Accuracy of gas extraction Accuracy of the gas				Tech	inical	Spec	cifica	tions												
-	•	measuremen	nt		MEASU	REMENTS														
≤ ± 8 %	± 4 ppm	≤ ± 10 %	± 20 ppm		Technol	CONTRACTOR CONTRACTOR OF CONTRACTOR OF CONTRACTOR CONTRACTOR OF CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONT	tio apost		AS) for fiel	ld provon										
≤ ± 8 %	± 30 ppm	≤ ± 10 %	± 5 ppm		highly re	epeatable	results													
≤ ± 8 %	± 30 ppm	≤ ± 10 %	± 5 ppm		(TDCG) V	rget gases value. Estir na transfo	nation of													
≤ ± 8 %	± 4 ppm	≤ ± 10 %	± 5 ppm		Suitable	for transf	formers u	sing mine	ral insulat	ing oil an	d also									
≤ ± 8 %	± 4 ppm	≤ ± 10 %	± 5 ppm			ised oils (n LDL - UDL		synthetic)												
≤ ± 8 %	± 4 ppm	≤ ± 10 %	± 5 ppm		Hydrog Carbon	en (H₂) Monoxide		- 5,000 pp												
$\leq \pm 8\%$	± 4 ppm	≤ ± 10 %	± 5 ppm		Methan		2	- 50,000 p	opm											
$\leq \pm 8\%$	± 4 ppm	≤ ± 15 %	± 20 ppm		Ethane	(C₂H₀)	2	- 50,000 p	opm											
$\leq \pm 8\%$	± 500 ppm	≤ ± 10 %	± 500 ppm		Ethylen Oxygen	(O ₂)	1	- 50,000 p 00 - 50,00	I0 ppm											
≤ ± 8 %	± 1500 ppm	≤ ± 10 %	± 1500 ppm		Nitroge Moistur	e (H₂0)		0,000 - 10 - 100% R												
				J	Accurat Oxygen		±	10%												
					Nitroge			15%												
					All othe Moistur			5% or ±LC 3%	JL (whiche	ever is gre	ater)									
				× 1		ilable on fr			ormers on	ly.	_									
				Y		acy quoteo on. Gas -ir														
				(by sampli				ity also be	2									
				-																

Accuracy of gas **Measuring Quantity** $\leq \pm 8\%$ Hydrogen H₂ ± $\leq \pm 8\%$ Carbon Monoxide CO ± Carbon Dioxide CO₂ $\leq \pm 8\%$ ± $\leq \pm 8\%$ Methane CH₄ ± $\leq \pm 8\%$ Acetylene C₂H₂ ± Ethylene C₂H₄ $\leq +8\%$ ± Ethane C₂H₆ $\leq \pm 8\%$ ± Propane C₃H₈ $\leq \pm 8\%$ ± Oxygen O₂ $\leq \pm 8\%$ ± Nitrogen N₂ $\leq \pm 8\%$ ±

How to read accuracy spec sheet

 Accuracy **

 Oxygen (0:1
 ±10%

 Nitrogen (N:2)
 ±15%

 All other gases
 ±5% or ±LDL (whichever is greater)

 Moisture (H:0)
 ±3%

 *Nz available on free-breathing transformers only.

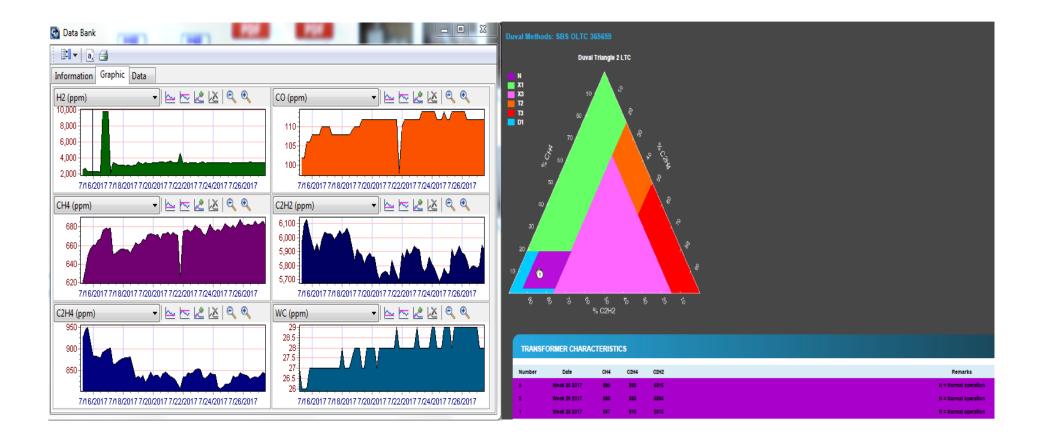
 **Accuracy quoted is the accuracy of the detectors during calibration. Gas -in oil measurement accuracy may also be affected by sampling and/or oil type.

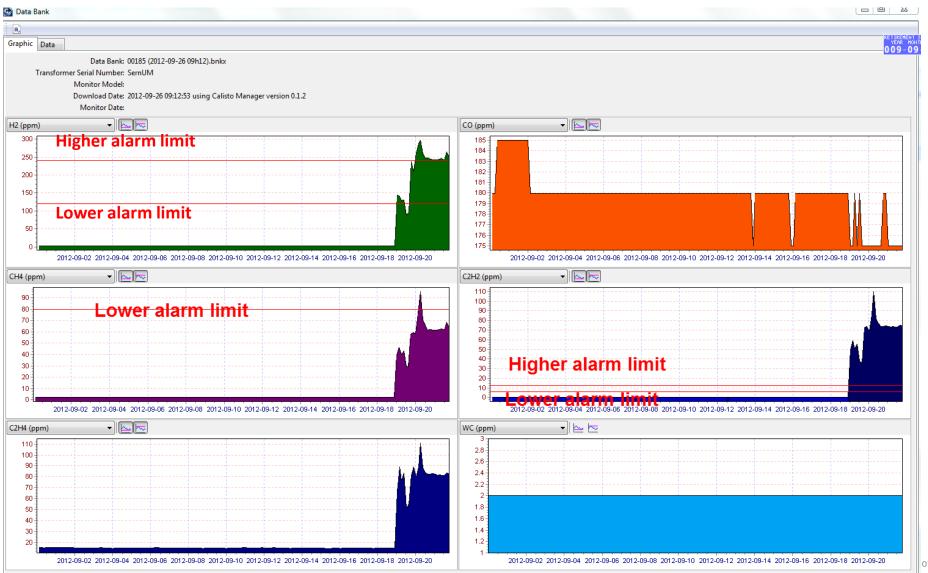
 Often accuracy stated is misleading . Accuracy shown is detector accuracy, not complete system accuracy (detector+extraction) and only during lab calibration , not long term accuracy...

OLTC / Main tank deployment with diagnostic tool

Asian Transit System June 2017

Asian Transit System installation



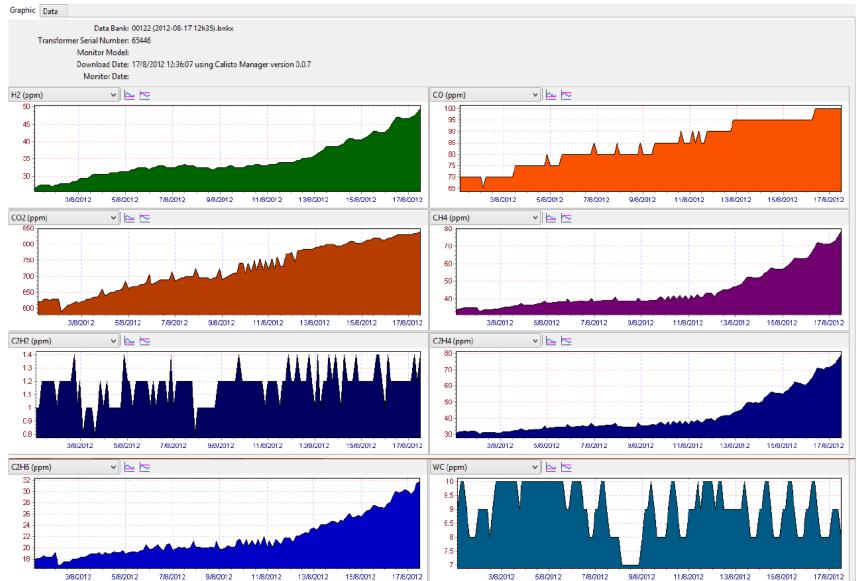

OLTC analysis using IV 5.0

Nuclear Canadian Utility

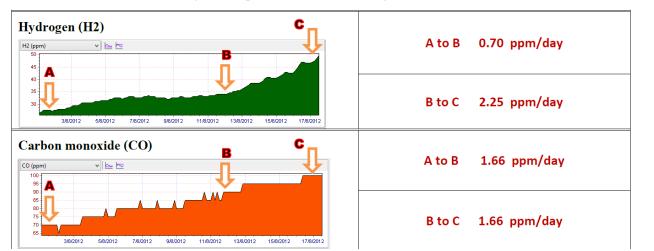
ova Group. All Rights Reserved

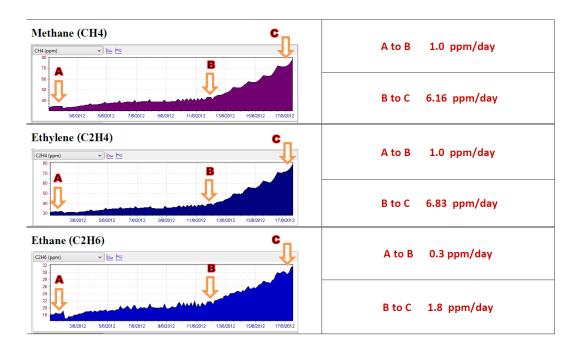
Case study: Steel Industry S.E. Asia

Steel Industry S.E. Asia


Main Tank Transformer Capacity 96 MVA, 22/1.1kv

Manufacturers: TAMINI


Steel Industry S.E. Asia



Altanova Group. All Rights Reserved

Steel Industry S.E. Asia fault deteriorating

The DATA Bank It takes 12 days develop from A to B and 6 days form B to C

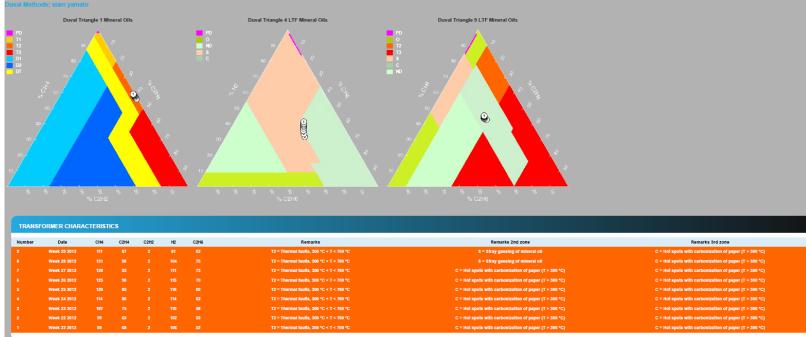
©2023 Altanova Group. All Rights Reserved

ΛLTΛΝΟVΛ

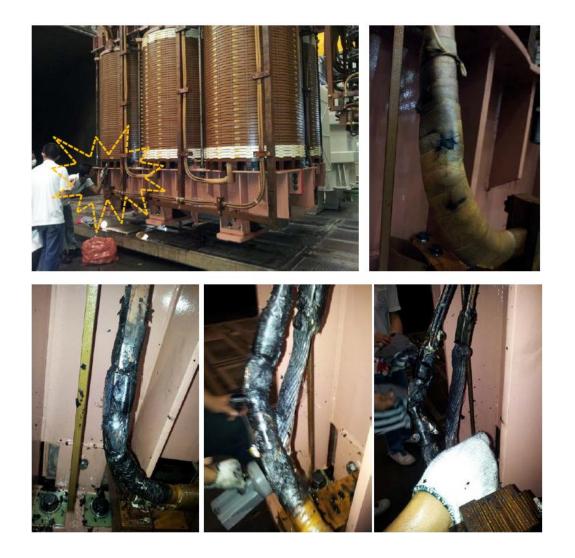
Steel Industry S.E. Asia Data vs IEC standard

ALARM SET: IEEE TRN MINERAL (V LESS OR EQUAL 69)									
Name	H2	CH4	C2H6	C2H4	C2H2	02	N2	C02	со
High Level 4	1801	1001	151	201	36			10001	1401
High Level 3	701	401	101	101	10			4001	571
High Level 2	101	121	66	51	2			2500	351
High Level 1	50	60	33	25	1			1800	175

MEASUREMENTS (PPM)


Date	H2	CH4	C2H6	C2H4	C2H2	02	N2	CO2	со
Week 29 2012	80,8	110,5	61,9	86,7	1,5	21380,6	48527,8	2863,2	385,8
Week 28 2012	104,3	130,8	74,6	97,8	1,8	28119,6	61678,6	3656,6	498,8
Week 27 2012	110,7	127,5	72,7	92,7	1,9	27930,4	61946,4	3644,8	498,5
Week 26 2012	115,1	124,8	69,7	89,8	2	28025	61803,6	3585,9	486,7
Week 25 2012	116,4	120,3	66	85,2	2,2	28396,4	61571,4	3526,6	478,4
Week 24 2012	114,1	114,5	62,4	79,8	1,9	28641,1	61571,4	3458,4	464,8
Week 23 2012	109,5	106,6	57,7	74,7	2	28830,4	62392,9	3430,9	452
Week 22 2012	102	99,3	53,2	69,1	1,8	29931,3	63000	3439,4	446,9
Week 22 2012	105,9	98,6	52,3	67,7	1,6	31714,3	65285,7	3402,9	450,7

Steel Industry S.E. Asia diagnostic


ALTANOVA A DOBLE COMPANY ISIN MILLION WHEN IN TECHNO

DGA ANALYSIS

Date	Duval triangle	Rogers gas ratios	IEC 60599 gas ratios
Week 29 2012	T2 = Thermal faults, 300 °C < T < 700 °C	Thermal fault temp. range less than 700 °C	Thermal fault 300 °C < T < 700 °C
Week 28 2012	T2 = Thermal faults, 300 °C < T < 700 °C	Thermal fault temp. range less than 700 °C	Thermal fault 300 °C < T < 700 °C
Week 27 2012	T2 = Thermal faults, 300 °C < T < 700 °C	Thermal fault temp. range less than 700 °C	Thermal fault 300 °C < T < 700 °C
Week 26 2012	T2 = Thermal faults, 300 °C < T < 700 °C	Thermal fault temp. range less than 700 °C	Thermal fault 300 °C < T < 700 °C
Week 25 2012	T2 = Thermal faults, 300 °C < T < 700 °C	Thermal fault temp. range less than 700 °C	Thermal fault 300 °C < T < 700 °C
Week 24 2012	T2 = Thermal faults, 300 °C < T < 700 °C	Thermal fault temp. range less than 700 °C	Thermal fault 300 °C < T < 700 °C
Week 23 2012	T2 = Thermal faults, 300 °C < T < 700 °C	Low temp thermal fault	Unknown fault: partial or mixture of faults - mainly thermal faults
Week 22 2012	T2 = Thermal faults, 300 °C < T < 700 °C	Low temp thermal fault	Unknown fault: partial or mixture of faults - mainly thermal faults
Week 22 2012	T2 = Thermal faults, 300 °C < T < 700 °C	Low temp thermal fault	Unknown fault: partial or mixture of faults - mainly thermal faults

Steel Industry S.E. Asia Internal investigation KLTANOVA

Summary

- DGA is a very powerful tool for detecting and monitoring developing faults in oil-filled equipment
- The accuracy of the measurements can influence the conclusions drawn
 - Be sure to take a good oil sample
 - Always use an accredited laboratory
- Be aware of the claimed "accuracy" of online DGA monitors, read the small print!

THANK YOU

Serge Gutieres P.eng.MBA sgutieres@doble.com

©2022 Altanova Group. All Rights Reserved.